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We prove that the periodic-orbit counting function, a measure of the rate of proliferation of periodic
orbits, for a barrier billiard and the 7/3-rhombus billiard is of the form ax?+bx +c, where x is the
length (equivalently, period) up to which periodic orbits are counted and a,b,c are system-specific con-
stants. The generality of our arguments strongly suggests that the law of proliferation given here is a
representation of general truth about two-dimensional plane-polygonal billiards.

PACS number(s): 05.45.+b

The dynamics of nonintegrable systems is one of the
central areas of research in recent times [1]. An immense
amount of work has been done on classically chaotic sys-
tems and their quantal counterparts. Billiards have
served as model examples in our understanding of various
shades of behaviors between complete regularity and
chaos. Although a reasonably good understanding has
been achieved for completely chaotic and integrable sys-
tems, the systems exhibiting intermediate behaviors have
only recently been studied in detail [2,3]. To study the
behavior of nonintegrable systems, it is natural to exam-
ine the systems closest to the integrable systems. Parti-
cles enclosed in polygonal boxes (polygonal billiards) con-
stitute examples of this kind. The well-known integra-
ble system in this class of systems is a particle in a square
box. The invariant integral surface in the phase space is
topologically equivalent to a torus (sphere with one han-
dle; genus, g =1). A simplest deformation of this square
billiard is a rhombus billiard. The most well studied
rhombus billiard is the 7/3-rhombus billiard [2,3]. Yet
another simple example of the nonintegrable billiard is a
barrier billiard wherein there is a linear barrier of length
L /2 placed parallel to one of the sides in the center of a
square box (side length, L). In both these systems, any
typical trajectory lies on a surface topologically
equivalent to a double torus (g =2). This implies that
the billiards under present discussion are nonintegra-
ble; however, the deviation from integrability is only mar-
ginal. Due to this fact, these systems are termed almost
integrable [4] ( A-integrable) or pseudointegrable [5].

An extensive study of the solutions of the m/3-
rhombus billiard reveals that the pure rhombus modes
are quite irregular [2] and the spectral statistics deviates
from Poisson-like to Wigner-like. The semiclassical
analysis of the spectral statistics rests on the principle of
uniformity [6,7]. For a good understanding of the princi-
ple of uniformity, one needs to establish the law deter-
mining the rate of proliferation of the periodic orbits for
this class of systems.

For chaotic dynamical systems, it was proved that the
periodic orbits proliferate exponentially with the period
of the orbit [8,9]. For the A-integrable system, it was
conjectured by Katok [10], and independently shown by
Gutkin [11], that the asymptotic law would be exactly
quadratic. This result was recently sharpened by an ex-
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act analysis on the 7/3-rhombus billiard [3]. The aim of
this Rapid Communication is to extend these results to
the barrier billiard considered by Hannay and McCraw
[12]. On the basis of our general arguments, we believe
that the results obtained for these systems represent a
general truth about polygonal billiards. Of course, the
exact law of proliferation for a system exhibiting a gen-
eral intermediate behavior stands as an open problem
(e.g., as a function of the genus of the invariant surface).

By a family of periodic orbit, we mean an isolated tra-
jectory closing after an odd number of reflections, or a
band of trajectories closing after an even number of
reflections. The number of families of periodic orbits of
length less than or equal to x, F(x), is finite for any x
[11]. For a polygon, it was conjectured [10] that

F(x)=cx"+0(x""1) . (1)

For A-integrable polygons, n =2. If we consider an in-
tegrable system, A corresponding to an A-integrable sys-
tem, P, and let g be the genus of the surface R corre-
sponding to P, denoting by |A| and |P| the respective
areas of A and P, Gutkin [11] proved that there exists a
constant ¢; such that

F(x)=c,(mgx?/|P|)+0(x) . )

The constant ¢, €[1,|P|/|A|]. It was shown later [3]
that the bounds on c¢; must go down by two orders of
magnitude; in fact, ¢; ~ 1072, For the 7/3-rhombus bil-
liard, we have shown that ¢; =53/10872. We come to an
explanation of the discrepancy in the quadratic coefficient
later. For the 7/3-rhombus billiard, an exact number-
theoretic analysis was carried out and we obtained [3]

F(x)=(53V3/81m)x%/L*+[26(4V3—3)/817]x /L
+12(2v3—3) /277 . (3)

This analytic result is asymptotically exact when com-
pared with the numerically enumerated orbits (Fig. 1).
Also, it is worth mentioning that the results match, even
for x ~10%.

We now present our calculation for the Hannay-
McCraw (HM) billiard [12]. By stacking the domains of
the billiard side by side in both the orthogonal directions,
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one obtains an infinite lattice of barriers and gaps, with
barrier to gap to ratio unity. One can label the end
points of barriers by integer pairs that form lattice points.
It can be easily seen that the straightened version of a ra-
tional gradient (=|p /q|) trajectory will initially meet lat-
tice point (g,p) and then repeat itself by meeting lattice
points (mgq,mp), where m €Z. On the other hand, the ir-
rational gradient trajectory will never visit any lattice
point, though it will come arbitrarily close to many lat-
tice points, hence will never be periodic. Thus the
periodic orbits in the system are the ones that hit any lat-
tice point (g,p) in this array of barriers; the gradient of
J

4 [closing at (4q,4p),one band] for (o,0)
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such trajectories will be given by |p /g|. By the above ar-
guments, we need to consider only the pairs (g,p) such
that g and p are coprime, since they only give a primitive
periodic orbit, and points (mgq,mp) where m €Z, give m
repetitions of a primitive periodic orbit corresponding to
(g,p). Each such (g,p) gives different numbers of bands
or families of periodic orbits, depending on whether the
pair is odd-odd (o0,0), even-odd (e,0), or odd-even (o,e).
The length of periodic orbit in a given family correspond-
ing to a lattice point (g,p) is given by I =cL (g>+p?)!/?,
where ¢ depends on the number of families or periodic or-
bits. It can be seen that [8], for (g,p),

¢ = 12,2 [two bands, each closing at (2¢,2p)] for (o,e) 4)
1,1,2 [two bands closing at (g,p) and one at (2¢,2p)] for (e,0) .

If 1 =x for a given family of points (g,p), the contribution
from this family of (g,p) should be counted in F(x).
Drawing a quarter circle of radius /, in the quadrant un-
der consideration, all points (gq,p) having a family of
periodic orbits with length ¢/, =x (or I, =x /c) must be
considered for the calculation of F(x). The quarter circle
is inscribed in a square O ABC with side length /, (Fig. 2).
Thus the area of this square is /2 and the area of the quar-
ter circle OAC is 7l? /4. We shall denote the integer
(fractional) part of a number by [ ] ({ }). The number of
lattice points N in the square OABC is given by
([1;/L1+1)* ((1,/L —{1,/L}+1)*). Taking the frac-
tional part of /| /L, on an average as 1, we can write

N=(,/L*+(,/L)—1/4 . (5)

Then the number of lattice points in a quarter circle is
just

N,=N(ml}/4)/13=nN/4 . 6)

Since the probability that two randomly chosen numbers
are coprime is (6 /7?) [13], the number of coprime lattice
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FIG. 1. A log-log plot of the counting functions, F(x) vs the
length (x) of primitive periodic orbit. The dashed curve
represents Eq. (3) and the solid curve represents F(x) obtained
numerically.

[

points in a quarter circle is
Nc=(6/m*)(nN /4)
=(3/2m)1}/L*+(3/2m)l, /L +3/87 . (7)
The counting function can now be written explicitly as
[using Eq. (4)]
F(x)=P,N,(x/4)+2P,,N,(x/2)
+2P,, N, (x)+P,N, (x/2), (8)

where, e.g., P, is the probability that a given coprime
lattice point is of (odd,odd) type and N,,(x) is the total
number of odd-odd coprime lattice points contained in
the quarter circle of radius x (=N¢). Trivially,

pP,=P

00 0€=P€0:% ’ (9)
thus
F(x)=1[Nc(x/4)+3Nc(x /2)+2No(x)]

=(45/327)(x /L)*+(15/87)(x /L)+3 /4w .  (10)

This is the asymptotic law of proliferation of periodic or-
bits for the system under consideration. How fast the ac-
tual F(x) converges to Eq. (10) depends on the rate of
convergence of P, P, P,,, and N, in accordance with
Egs. (9) and (7), respectively. It can be easily seen that
P, P,,P,, converges rapidly to ;. Our numerical results

show that the percentage difference between the actual
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FIG. 2. By taking the unit cell we obtain a periodic array of

barriers. The end points of the barriers can be assigned integer
labeling.
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number of coprime pairs and the results obtained by Eq.
(7) decreases very fast as the x increases (even at x =50
and 500 the percentage difference is only 2% and 0.19%,
respectively). For similar reasons we get an equally re-
markable agreement in the case of the 7/3-rhombus bil-
liard, as seen in Fig. 1.

Let us look at the reason underlying the difference be-
tween the quadratic coefficient obtained by us and the
one by Gutkin. As is clear from Egs. (3) and (10), the
quadratic coefficient is one order of magnitude less than
the Gutkin estimate in the case of the HM barrier bil-
liard. In considering the number of lattice points formed
by stacking the fundamental region of the corresponding
integrable system, the condition of coprimality was not
taken into account by Gutkin. As explained earlier, an
orbit labeled by a pair (mq,mp), where m €Z, gives m re-
petitions of a primitive periodic orbit corresponding to
point (g,p), where g and p are coprime. Hence ignoring
the coprimality condition leads to an over counting of the
periodic orbits. Further, due to symmetry in the tesselat-
ed two-dimensional plane, calculations need to be per-
formed for the 7 /4 sector in the HM billiard and for the
/6 sector in the 7/3-rhombus billiard. In general, of
course, for a domain with a discrete symmetry of order
N, only a 7m/N sector needs consideration. Finally, one
must note a basic difference between the lattice generated
by the fundamental polygonal billiard and the corre-
sponding integrable system, which lies in the incomplete
tesselation of the plane by the nonintegrable billiards.
For instance, the barriers are of zero width and finite
length in the two examples considered in this paper. It is
this structure that enables us to completely classify the
orbits via integer labeling. The relative weights
[PyysP,e,P,, in the HM billiard, and P, P,,., etc. (see
Ref. [3]) in the 7/3-rhombus billiard] for different types
of coprime lattice points differ in different systems and
lead to a different quadratic coefficient. Hence, to give a
general formula for the law of proliferation of periodic
orbits exactly demands a complete enumeration and
classification of periodic orbits. Although this important
question cannot be answered today, we do present a gen-
eral recipe in the following that comes very close to an
exact formula for the quadratic coefficient (see Fig. 3).

Presently, however, we discuss the nature of this law
when repetitions are counted. Recently, it was conjec-
tured [14] that

F(x)~x?t% 8>0. (11)

This conjecture was tested using numerical calculations
[14]. However, it ensues from our arguments in this pa-
per and Ref. [3] that the law is exactly quadratic (asymp-
totically) and that the asymptotic convergence is very fast
(x ~10'). The authors of Ref. [14] have not dis-
tinguished the primitive periodic orbits from their repeti-
tions. If we follow along lines similar to the arguments
given above by considering the repetitions of primitive
periodic orbits, we obtain an asymptotic behavior of the
counting function, which we will now discuss. It may be
remarked that the usefulness of the following calculations
emerges from the fact that one requires the primitive
periodic orbits and their repetitions for the semiclassical
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FIG. 3. A log-log plot of (i) the modified counting function,
F’(x), taking account of primitive orbits, and its repetitions [see
Eq. (15)] represented by the dashed curve; and (ii) the counting
function F(x), taking account of only primitive orbits for the
Hannay-McCraw billiard [see Eq. (10)], represented by a solid
curve, vs the length (x) of the primitive periodic orbit.

calculations of various measures of the spectral statistics
(e.g., A statistic, number variance, etc.).

If we are counting repetitions of the primitive orbits of
length =x, then the primitive orbits of the length be-
tween x and x /2 will not be repeated; the primitive orbits
with length =x /2 but <x /3 will be repeated once; the
primitive orbits with length = x /3 but <x /4 will be re-
peated twice, and so on. Thus taking account of these re-
petitions, one can write an expression for the number of
“effective” coprime lattice points within a quarter circle
of radius x,N,(x) as

N,(x)=N¢(x)—Ne(x /2)+2[Ne(x /2)—Ne(x /3)]
4+ - +n[Nc(x/n)—Nc(1)] . (12)

Here n is the largest integer less than x; we have neglect-
ed N (I) (I <1) since there are no periodic orbits of length
less than 1 in the system we have considered. Equation
(12) can be rewritten as

N,(x)=Ng(x)+Ne(x /2)+Ne(x /3)+ -+ +Nelx /n)

—nNq(1) . (13)
Then, the modified counting function F’(x) becomes
F'(x)=1L[N,(x /4)+3N,(x/2)+2N,(x)] . (14)

Substituting Eq. (13) in Eq. (14), we get

F'(x)=1[(31?/2m) A (n4)/16+3 A(n,)/4+2 A4 (n)]
+(31/27)[B(n,)/4+3B(n,)/2+2B(n)]
—3/m)n,+n,+n), (15)

where n, and n, are largest integers less than x /4 and
x /2, respectively. A(n) and B(n) are given by
Sr_(1/i%) and 37_,(1/i), respectively. Asymptotically
(n— ), A(n)=m*/6, and B(n)=In(n)+7y, where y is
the Euler-Mascheroni constant, equal to 0.5772157. .. .

The rate of convergence of the actual F'(x) to Eq. (15)
depends upon the rate of convergence of the actual N,(x)
to Eq. (3). Our numerical calculations show that the per-
centage difference between the actual “effective” coprime
numbers and those obtained from Eq. (13) at x =50 is
5%, which is almost 2.5 times the one observed for N.
It is for this reason that the convergence to the quadratic
law [Eq. (15)] is much slower [14] if one considers repeti-
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tions.

For lower values of x, it was recently conjectured [14]
that the counting function goes as x 2+ for pseudointegr-
able billiards. Obviously, it does not agree with our
findings for the reasons discussed in the above paragraph.
It was further believed [14], due to the law being x 213
that the spectral rigidity would vary as L'™% (6>0),
where L is the averaging length of an interval over the
energy spectrum. It is well known that the spectral rigi-
dity for pseudointegrable systems is intermediate between
the Poisson and the Gaussian Orthogonal Ensemble [2]
(weaker than a linear dependence [15]). Since we have
shown for the 7/3-rhombus billiard and the Hannay-
McCraw billiard that the counting function is exactly a
quadratic law for all practical purposes (meaning thereby
that it is the asymptotic behavior of the proliferation law
which is of any significance in the semiclassical deriva-
tion of spectral statistics [7]), it follows that the conjec-
tured appearance of § in the spectral rigidity having its
roots in the counting function is unfounded. Moreover,
one can easily see that the rate of proliferation for the
square billiard (integrable system) is also asymptotically
exactly quadratic. For this system, the A;(L)=L /15 [7].
Now, for the same reasons as exist for the two examples
discussed in this paper, there is indeed slow convergence
of the counting function (with repetitions) to the exact
quadratic law. It clearly brings out the fact that the be-
havior of the counting function at low values of x is of
negligible relevance in the semiclassical analysis of the A,
statistic. It needs to be emphasized that even with repeti-
tions, the counting function goes asymptotically as x? (as
against x2"%), although at rather large values of x
(~500). Moreover, one can see that 8 is not even a con-
stant number from the calculations in Ref. [14], a fact
that invalidates the conjecture.

To conclude, we have shown analytically and with
sufficient numerical support that the rate of proliferation
of the periodic orbits is (asymptotically) exactly quadra-
tic. The reason underlying the asymptote, ax?+bx +c,
to the counting function is clearly related to the tessella-
tion of the two-dimensional plane by the fundamental re-
gion of the billiards. It is well known that a rational po-
lygon can periodically tile a surface that is everywhere
flat, in the sense of null Gaussian curvature, except at iso-
lated vertex points of singular negative curvature. A
periodic structure that tiles the almost everywhere flat
surface may consist of several polygons and hence the
space can be assigned distinct labels (albeit complicated),
taking account of different periodicities, in a spirit similar
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to the one presented above. Let us consider an irrational
billiard with an internal angle B, where 3 is an irrational
number. By the continued fraction expansion of B, for
the jth rational convergent of B, e=|B—p;/q,|, can be
made as small as desired. Hence there exists an “e-close”
rational billiard for any irrational billiard. Thus the ar-
guments leading to the distinct labeling of an almost flat
surface are applicable to these billiards.

To enumerate distinct primitive periodic orbits, one
needs a condition analogous to the coprimality condition
required by the two systems discussed above, since out of
all lattice points lying on the same line of a given slope
only one will give a primitive periodic orbit. Let us
denote the probability of the “‘coprimality condition” to
be satisfied by distinct labels by P,. Furthermore, the
classification entailing each distinct label will give rise to
relative weights in which the orbits will be distributed; let
us denote it by P; [j denotes classes, e.g. (odd,odd),
(even,odd), and (odd,even) in the HM billiard]. For a po-
lygon with symmetry group of order N, the points to be
considered will be restricted to a /N sector. This num-
ber, N;, can be written as 3,(a;x2+8;x +y,)/N, where
the summation is over all periodicities and x has usual
meaning. Correspondingly, the number of ‘“‘coprime”
points, N;-(x), are P.N;(x). For each class of periodic
orbit for which the weight is P; there may be k types of
periodic orbits closing at length ;;x. With this the
counting function can be written as

F(x)=2Pj§NLC(x/§kj) , (16)
j
and hence the coefficients of F(x)=ax2+bx +c are
a=(P, /N); a,-ZPj%Q-}Z , (17a)
b=(P, /N)z_ﬁiszjzkgj;‘ , (17b)
J (17¢)

i j

Hence, our analysis strongly suggests that the asymptote
to the counting function will always be of the form
ax2+bx +c, and convergence to this asymptote will de-
pend on convergence of both P, and P;. However, the
asymptotic law of proliferation of the periodic orbits will
be exactly quadratic (~x?2). The aim of our discussion
on the spectral rigidity is to point out that the basic
reason underlying its intermediate behavior (between
Poisson and GOE) remains unknown. To this effect,
work is currently in progress.
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